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Abstract. We consider a superextension of the extended Jordanian twist, describing the non-standard
quantization of the anti-de Sitter (AdS) superalgebra osp(1|4) in the form of a Hopf superalgebra. The
super-Jordanian twisting function and corresponding basic coproduct formulae for the generators of osp(1|4)
are given in explicit form. A non-linear transformation of the classical superalgebra basis not modifying the
defining algebraic relations but simplifying coproducts and antipodes is proposed. Our physical application
is in the interpretation of the new super-Jordanian deformation of the osp(1|4) superalgebra as deformed
D = 4 AdS supersymmetries. Subsequently we perform a suitable contraction of the quantum Jordanian
AdS superalgebra and obtain a new κ-deformation of the D = 4 Poincaré superalgebra, with the bosonic
sector describing the light-cone κ-deformation of the Poincaré symmetries.

1 Introduction

The main aims of studying the quantum deformations of
space-time Lie algebras and Lie superalgebras is to provide
the geometric origin of deformed relativistic symmetries,
non-commutative space-times and their corresponding su-
persymmetric extensions. The quantum deformations of
Poincaré, AdS and conformal space-time symmetries in
D = 4 were already extensively studied (see e.g. [1–13]). In
particular for the Poincaré and conformal algebras one can
introduce the deformations parametrized by the geometric
mass parameterκ, i.e. described as so-calledκ-deformations
(see e.g. [1, 5, 6, 8–13]) which were also used for the intro-
duction of κ-deformed field theories (see e.g. [14–18]). Such
deformations introduce in a geometric way the third fun-
damental parameter κ in physics (besides � and c) which
can be linked with the Planck mass and quantum grav-
ity [19, 20]. It appears that in the general case, e.g. for
the D = 4 conformal algebra, one can introduce several
mass-like deformation parameters [12].

It is well known that in the recent quarter of the last cen-
tury the new unified models of fundamental interactions are
supersymmetric (e.g. supergravities, superstrings, super-p-
branes, super-D-branes, M-theory). In particular, we stress
that the non-commutative space-times describing D-brane
world-volume coordinates in a Kalb–Ramond two-tensor
background [21] in fact should be extended supersymmetri-
cally (see e.g. [22–25]). We argue therefore that if the notion
of non-commutative geometry and quantum groups are ap-
plicable to the present supersymmetric framework of fun-
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damental interactions, the non-commutative superspaces
as well as the quantum supersymmetries should be studied.
In this paper we limit ourselves to the case of “physical”
D = 4 SUSY case; the application to e.g. M-theory re-
quires the consideration of deformed supersymmetries and
superspaces for all D ≤ 11.

For D = 4 supersymmetries only the standard κ-de-
formation of the Poincaré superalgebra has been stud-
ied [26–29] which was obtained as the quantum AdS con-
traction of the Drinfeld–Jimbo q-deformation of osp(1|4),
in the contraction limit lim

q→1
R→∞

R ln q = κ−1, where R is the

AdS radius. In such a limit the classical r-matrix

r =
1
κ

3∑
i=1

Ni ∧ Pi, (1.1)

describing the standard κ-deformed D = 4 Poincaré alge-
bra, was supersymmetrized. We recall that the elements
Mj = 1

2 εjklMkl, Nj = M0j , Pk, P0 (j = 1, 2, 3) generating
the Poincaré algebra P(3, 1) = {Mµν , Pµ | µ, ν = 0, . . . , 4}
satisfy the standard commutation relations:

[Mj , Mk] = iεjkl Ml, [Mj , Nk] = iεjkl Nl,

[Nj , Nk] = −iεjkl Ml, [Mj , Pk] = iεjkl Pl,

[Mj , P0] = 0, [Nj , Pk] = −iδjk P0,

[Nj , P0] = −iPj , [Pµ, Pν ] = 0.

(1.2)

In this paper we consider another non-standard de-
formation of the osp(1|4) superalgebra with the classical
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r-matrix of Jordanian type, satisfying the graded classi-
cal Yang–Baxter equation [30, 31]. We show that in the
quantum contraction limit R → ∞ the fundamental mass
parameter κ entering into our new κ-deformed D = 4
super-Poincaré algebra is defined as follows:

lim
ξ→0

R→∞

ξ R =
i
κ

, (1.3)

where ξ denotes the suitably chosen dimensionless param-
eter describing the non-standard deformation of osp(1|4).
In such a way we obtain an alternative κ-deformation of
the D = 4 super-Poincaré algebra described infinitesimally
by the supersymmetrization of the following r-matrix for
the light-cone κ-deformation of the D = 4 Poincaré alge-
bra [8, 12]:

r =
1
κ

(P1 ∧ (N1 + M2) + P2 ∧ (N2 − M1) + P+ ∧ N3) ,

(1.4)
where P+ = P0+P3. The quantum deformation of relativis-
tic symmetries generatedby the r-matrix (1.4) describes the
κ-deformed Minkowski space with the “quantized” light-
cone direction x+ = x0 + x3 [9,10]. We point out that the
light-cone κ-Poincaré algebra has been introduced firstly in
a particular basis under the name of the null-plane quantum
Poincaré algebra [10].

In the general case the classical r-matrices of Jordanian
type for any simple Lie algebra depend on several deforma-
tion parameters, ξ1, ξ2, . . . , ξn, and it is a sum of the one-
parameter classical r-matrices of Jordanian type [30,32,33],
where the one-parameter classical r-matrix has the form

r(ξ) = ξ

(
hγ0 ∧ eγ0 +

N∑
i=1

eγi ∧ eγ−i

)
, (1.5)

provided that the generators (hγ0 , eγ0 , eγ±i
) satisfy the re-

lations [30]1

[hγ0 , eγ0 ] = eγ0 , [eγi , eγ−j ] = δij eγ0 ,

[hγ0 , eγi ] = (1 − tγi) eγi , [hγ0 , eγ−i ] = tγi eγ−i

(tγi ∈ C),

[eγ±i , eγ0 ] = 0, [eγ±i , eγ±j ] = 0. (1.6)

In the case of Lie superalgebras the terms constructed
from odd (fermionic) generators should be added in
(1.5) [30]. For theLie superalgebra osp(1|4) the general clas-
sical r-matrix of Jordanian type is of two-parameter type,
rAdS(ξ1, ξ2). It turns out that the AdS contraction limit
(1.2) gives a non-trivial result provided ξ = ξ1 = ξ2, and
it describes our new κ-deformation of the D = 4 super-
Poincaré algebra.

Recently in [34] by completing earlier results from [35]
(see also [36]) there was obtained a twist quantization of

1 The formulae (1.5) and (1.6) generalize the considerations
presented in [32,33] by describing the classical r-matrices with
the support {hγ0 , eγ0 , eγ±i} which does not necessarily belong
to the Borel subalgebra.

osp(1|2), describing the κ-deformation of the D = 1 con-
formal superalgebra, which can be interpreted as the defor-
mation of the D = 2 AdS superalgebra. Similarly, in this
paper we complete the results presented in [31] and con-
sider the twist quantization of osp(1|4) with the physical
application to AdS supersymmetry and its super-Poincaré
limit.

The plan of our paper is the following. In Sect. 2 we
present the mathematical (Cartan–Weyl) basis of osp(1|4)
and consider two corresponding Jordanian type classical
r-matrices. In Sect. 3 we present the two-parameter quan-
tization of these classical r-matrices with the deformation
modifying only the coalgebra sector, and calculate the basic
coproducts for the osp(1|4) generators. Further, employ-
ing the formulas recently proposed in [30] we introduce
a new more suitable basis for the superalgebra osp(1|4).
In Sect. 4 we shall introduce the AdS physical basis and
perform the AdS contraction, introducing the mass-like
deformation parameter κ. In such a limit we obtain the
Jordanian type classical r-matrices and the twisting two-
tensors for the Poincaré and super-Poincaré algebras. In
Sect. 5 we comment on κ-deformations of N = 1 Poincaré
supersymmetries and on deformed N -extended AdS super-
symmetries.

2 Cartan–Weyl basis and Jordanian type
classical r-matrices of osp(1|4)

In order to obtain compact formulas describing the commu-
tation relations for generators of the orthosymplectic su-
peralgebra osp(1|4) we use embedding of this superalgebra
in the general linear superalgebra gl(1|4). For convenience
we consider the general case of osp(1|2n) [37] embedded
in gl(1|2n). Let aij (i, j = 0, ±1, ±2, . . . ,±n) be a stan-
dard basis2 of the superalgebra gl(1|2n) with the standard
supercommutation relations

[aij , akl] := aijakl − (−1)θijθklakl,

aij = δjkail − (−1)θijθklδilakj , (2.1)

where θij = 1 when one index i or j is equal to 0 and another
takes any value ±1, . . . ,±n; θij = 0 in the remaining cases.
The superalgebra osp(1|2n) is embedded in gl(1|2n) as a
linear envelope of the following generators:
(i) the even (boson) generators spanning the symplectic
algebra sp(2n):

eij := ai−j + sign(ij) aj−i = sign(ij) eji

(i, j = ±1, ±2, . . . ,±n); (2.2)

(ii) the odd (fermion) generators extending sp(2n) to
osp(1|2n):

e0i := a0−i + sign(i) ai0 = sign(i) ei0

(i = ±1, ±2, . . . ,±n). (2.3)

2 This basis can be realized by graded (2n + 1) × (2n + 1)-
matrices.



A. Borowiec et al.: Jordanian quantum deformations of D = 4 anti-de Sitter and Poincaré superalgebras 141

Wealso set e00 = 0and introduce the sign function: signx =
1 if a real number x ≥ 0 and signx = −1 if x < 0. One
can check that the elements (2.2) and (2.3) satisfy the
following relations:

[eij , ekl] = δj−keil + δj−l sign(kl) eik

−δi−lekj − δi−k sign(kl) elj , (2.4)

[eij , e0k] = δj−k sign(k) ei0 − δi−ke0j , (2.5)

{e0i, e0k} = sign(i) eik (2.6)

for all i, j, k, l = ±1, ±2, . . . ,±n, where the bracket {·, ·}
means the anticommutator.

In our case of osp(1|4) we have n = 2. The 24 elements
eij (i, j = 0, ±1, ±2) are not linearly independent (we have
10 constraints, for example, e1−2 = −e−21) and we can
choose from them the Cartan–Weyl basis as follows:

(a) the raising generators :

e1−2, e12, e11, e22, e01, e02; (2.7)

(b) the lowering generators :

e2−1, e−2−1, e−1−1, e−2−2, e−10, e−20; (2.8)

(c) the Cartan generators :

h1 := e1−1, h2 := e2−2. (2.9)

In accordance with [30,31] the general formula for the Jor-
danian type classical r-matrix of osp(1|4) is given as follows:

r1,2(ξ1, ξ2) = r1(ξ1) + r2(ξ2), (2.10)

where the classical r-matrices of Jordanian type r1(ξ1) and
r2(ξ2) have the form

r1(ξ1) = ξ1

(
1
2

e1−1 ∧ e11 + e1−2 ∧ e12 − 2e01 ⊗ e01

)
,

(2.11)

r2(ξ2) = ξ2

(
1
2

e2−2 ∧ e22 − 2e02 ⊗ e02

)
. (2.12)

Below we shall describe the twist quantization generated
by the classical r-matrix (2.10).

3 Jordanian type deformations of osp(1|4)

In accordance with the general scheme [30] the complete
twisting two-tensor F (ξ1, ξ2) corresponding to the resulting
Jordanian type r-matrix (2.10) is given as follows:

F (ξ1, ξ2) = F̃22(ξ2)F11(ξ1), (3.1)

where F11(ξ1) is the twisting two-tensor corresponding to
the classical r-matrix (2.11), and F̃22(ξ2) is the transformed
twisting two-tensor corresponding to the classical r-matrix
(2.12) (see below the formulas (3.12)). Thus we can imple-
ment full deformation in two steps corresponding to two

terms in the formula (2.10).
The first step of Jordanian type deformation. The twisting
two-tensor F11(ξ1) corresponding to the r-matrix (2.11)
has the form

F11(ξ1) = F11(ξ1)Fσ11 , (3.2)

where the two-tensor Fσ11 is the Jordanian twist [38] and
F11 is the superextension of the Jordanian twist. These
two-tensors are given by the formulas

Fσ11 = ee1−1⊗σ11 , (3.3)

F11(ξ1) = exp
(
ξ1e1−2 ⊗ e12e

−σ11
)

F01, (3.4)

where the first factor on the RHS of (3.4) describes the
extended Jordanian twist [32], and [34]

F01 =

√
(1 + eσ11) ⊗ (1 + eσ11)

2(1 + eσ11 ⊗ eσ11)

×
(

1 − 2ξ1
e01

1 + eσ11
⊗ e01

1 + eσ11

)
, (3.5)

σ11 =
1
2

ln(1 + ξ1e11). (3.6)

We shall not provide here the explicit formulas of the
twisted coproduct ∆ξ1(x) := F11(ξ1)∆(x)F−1

11 (ξ1) and the
corresponding antipode Sξ1(x) for the generators x = eik,
since these formulas are intermediate in our scheme3.

Let us introduce the new generators in U(osp(1|4)) by
the inner automorphism firstly proposed in [30],

wξ1 :=
√

u(F11(ξ1))

= exp
(

ξ1 σ11 e1−2 e12

1 − e2σ11

)
exp

(
1
4

σ11

)
, (3.7)

where u(F11(ξ1)) is the Hopf “folding” of the two-tensor
(3.4): u(F11(ξ1)) = ((Sξ1⊗ Id)F11(ξ1))◦1. We postulate the
similarity map ẽik := wξ1eikw−1

ξ1
preserving the defining

relations (2.4)–(2.6).
The twisted coproducts for the elements ẽik are given

by simple and uniform formulas:

∆ξ1(e
±σ̃11) = e±σ̃11 ⊗ e±σ̃11 , (3.8)

∆ξ1(ẽik) = ẽik ⊗ 1 + eσ̃11 ⊗ ẽik (3.9)

for (ik) = (1 − 2), (12), (01) and

∆ξ1(ẽ1−1) = ẽ1−1⊗ e−2σ̃11 + 1 ⊗ ẽ1−1 (3.10)

+ξ1 (ẽ12 ∧ ẽ1−2 + ẽ01 ⊗ ẽ01)
(
e−σ̃11 ⊗ e−2σ̃11

)
.

The twisted Hopf structure of the subalgebra õsp2(1|2) :=
wξ1osp2(1|2)w−1

ξ1
⊂ õsp(1|4) := wξ1osp(1|4)w−1

ξ1
, gener-

ated by the elements ẽ22, ẽ02, ẽ2−2, ẽ−2−2, ẽ−20, is primi-
tive, i.e.

∆ξ1(ẽik) = ẽik ⊗ 1 + 1 ⊗ ẽik (3.11)

3 The coproduct formulas for the generators spanning the
classical r-matrix (2.11) can be found in [30].
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for (ik) = (22), (02), (2 − 2), (−2 − 2), (−20). This is not
valid for the initial subalgebra osp2(1|2) what provides a
main reason for the introduction of the similarity trans-
formation (3.7) [30]. The formulas for coproducts of the
negative generator ẽ2−1, ẽ−2−1 and ẽ−10 have a more com-
plicated form and we do not give them here.
The second step of Jordanian type deformation. Since the
subalgebra õsp2(1|2) is not deformed, we can use the results
of [34]. Namely, we apply the twisting two-tensor

F̃22(ξ2) = (wξ1 ⊗ wξ1) F02(ξ2) ee2−2⊗σ22

(
w−1

ξ1
⊗ w−1

ξ1

)
= F̃02(ξ2) eẽ2−2⊗σ̃22 , (3.12)

where

F̃02 =

√
(1 + eσ̃22) ⊗ (1 + eσ̃22)

2(1 + eσ̃22 ⊗ eσ̃22)

×
(

1 − 2ξ2
ẽ02

1 + eσ̃22
⊗ ẽ02

1 + eσ̃22

)
, (3.13)

σ̃22 =
1
2

ln(1 + ξ2ẽ22) (3.14)

to all generators of the ξ1-deformed superalgebra õsp(1|4).
The twisted coproduct

∆ξ1ξ2( · ) := F22(ξ2)∆ξ1( · )F−1
22 (ξ2)

for the elements ẽik belonging to the Borel subalgebra of
osp(1|4) are given by the formulas

∆ξ1ξ2(e
±σ̃11) = e±σ̃11 ⊗ e±σ̃11 , (3.15)

∆ξ1ξ2(ẽ12) = ẽ12 ⊗ eσ̃22 + eσ̃11 ⊗ ẽ12, (3.16)

∆ξ1ξ2(ẽ01) = ẽ01 ⊗ 1 + eσ̃11 ⊗ ẽ01

+ξ2
(
ẽ12 ⊗ ẽ02 − ẽ02e

σ̃11 ⊗ ẽ12
)
Ω̃ (3.17)

−ξ2
2
(
ẽ12ẽ02 ⊗ ẽ22 + ẽ22e

σ̃11 ⊗ ẽ12ẽ02
)
(ω̃22 ⊗ ω̃22) Ω̃,

∆ξ1ξ2(ẽ1−2)

= ẽ1−2 ⊗ e−σ̃22 + eσ̃11 ⊗ ẽ1−2 − ξ2ẽ2−2e
σ̃11 ⊗ ẽ12 e−2σ̃22

+ξ2
(
ẽ01 ⊗ ẽ02e

−σ̃22 + ẽ02e
σ̃11 ⊗ ẽ01

−ξ2ẽ12ẽ02ω̃22e
−σ̃22 ⊗ ẽ02e

−σ̃22

−ξ2ẽ02e
σ̃11 ⊗ ẽ12ẽ02ω̃22e

−σ̃22

− ξ2ẽ02e
σ̃11−σ̃22 ⊗ ẽ12ẽ02e

−2σ̃22
)
Ω̃

+ξ2
2
(
ẽ01ẽ02 ⊗ ẽ22e

−σ̃22 − ẽ22e
σ̃11 ⊗ ẽ01ẽ02

)
× (ω̃22 ⊗ ω̃22) Ω̃ (3.18)

+
ξ2
2

2
(
ẽ12 ⊗ ẽ22e

−σ̃22 + ẽ22e
σ̃11 ⊗ ẽ12

)
(ω̃22 ⊗ ω̃22) Ω̃,

∆ξ1(ẽ1−1)

= ẽ1−1⊗ e−2σ̃11 + 1 ⊗ ẽ1−1

+ξ1
(
ẽ12 ⊗ ẽ1−2e

σ̃22 − ẽ1−2 ⊗ ẽ12e
−σ̃22 + ẽ01 ⊗ ẽ01

+ξ2
(
ẽ01 ⊗ ẽ02ẽ12ω̃22e

−σ̃22 − ẽ02ẽ12ω̃22 ⊗ ẽ01

+ẽ01ẽ02ω̃22 ⊗ ẽ12e
−σ̃22 + ẽ12 ⊗ ẽ01ẽ02ω̃22

− 1
2

ẽ12ω̃22 ⊗ ẽ12e
−σ̃22 − 1

2
ẽ12 ⊗ ẽ12ω̃22

−ẽ2−2ẽ12 ⊗ ẽ12e
−σ̃22 + ξ2ẽ02ẽ12ω̃22 ⊗ ẽ02ẽ12ω̃22e

−σ̃22
))

× (e−σ̃11 ⊗ e−2σ̃11
)
. (3.19)

Here we use the notation ξ2ẽ22 = e2σ̃22 − 1, ω̃22 := (eσ̃22 +
1)−1, Ω̃ := ∆ξ2(ω̃22) = (eσ̃22 ⊗ eσ̃22 + 1)−1. The twisted
Hopf structure for the generators of subalgebra õsp2(1|2)
can be found in [34].

4 Light-cone κ-deformation
of the super-Poincaré algebra P(3, 1|1)

In order to propose the application of the deformed su-
peralgebra A ∈ Uξ1ξ2(osp(1|4)) to the description of anti-
de Sitter symmetries one should consider the real forms
which leave the classical r-matrices (2.11) and (2.12) skew-
Hermitian , i.e.

(r1(ξ1))� = −r1(ξ1), (r2(ξ2))� = −r2(ξ2). (4.1)

where the �-conjugation is an antilinear (super-)antiauto-
morphism, and it defines the real form sp(4; R) of sp(4; C) ⊂
osp(1|4).

According to [34] we consider two versions of the �-
conjugation which satisfy the condition (4.1).
(i) The †-conjugation is defined as follows:

e†
jk = −ejk, e†

0j = −ie0j (j, k = ±1, ±2), (4.2)

provided that

(ab)† = b†a†, (a ⊗ b)† = (−1)deg a deg b a†⊗ b† (4.3)

for any homogeneous elements a, b ∈ Uξ1ξ2(osp(1|4)).
(ii) The ‡-conjugation we define by

e‡
jk = −ejk, e‡

0j = −e0j (i, j = ±1, ±2), (4.4)

provided that

(ab)‡ = (−1)deg a deg bb‡a‡, (a ⊗ b)‡ = a‡⊗ b‡ (4.5)

for any homogeneous elements a, b ∈ Uξ1ξ2(osp(1|4)). From
the condition that σ11 (see (3.6)) and σ̃22 (see (3.14))
are Hermitian, it follows that the parameters ξ1, ξ2 are
purely imaginary.

Let MAB (A, B = 0, 1, 2, 3, 4) describe the rotation
generators of the AdS superalgebra o(3, 2) 
 sp(4; R) with
the standard relations[

MAB , MCD

]
(4.6)

= i (gBC MAD − gBD MAC + gAD MBC − gAC MBD) ,

MAB = −MBA, M�
AB = MAB (4.7)
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where gAB = diag (1, −1, −1, −1, 1). The Cartan–Weyl
(CW) generators ejk of sp(4; R) can be realized in the
terms of the generators MAB as follows:

e1−2 = i (M42 + M21) , e12 = i (M02 + M32) ,

e1−1 = i (M03 + M14) , e2−1 = i (M42 − M21) ,

e−2−1 = i (M02 − M32) , e2−2 = i (M03 − M14) ,

e11 = i (M34 + M04 + M13 − M01) ,

e−1−1 = i (M34 − M04 − M13 − M01) ,

e22 = i (M34 + M04 − M13 + M01) ,

e−2−2 = i (M34 − M04 + M13 + M01) . (4.8)

Using these formulas one can write the boson (even) part
of the classical r-matrix (2.10) in terms of the physical
generators MAB

4:

rb
1,2(ξ1, ξ2)

= ξ1

(
1
2

e1−1 ∧ e11 + e1−2 ∧ e12

)
+

1
2

ξ2 e2−2 ∧ e22

=
1
2

(ξ2 − ξ1)

×
(
M14 ∧ (M34 + M04) + M03 ∧ (M14 − M01)

)
− 1

2
(ξ1 + ξ2)

×
(
M14 ∧ (M13 − M01) + M03 ∧ (M34 + M04)

)
−ξ1(M42 + M21) ∧ (M02 + M32). (4.9)

There are two special cases, ξ1 = ξ2 and ξ1 = −ξ2. We are
interested in the first case ξ = ξ1 = ξ2:

rb(ξ) := rb
1,2(ξ, ξ)

= −ξ (M14 ∧ (M13 − M01) + M03 ∧ (M34 + M04)

+ (M42 + M21) ∧ (M02 + M32)) . (4.10)

Introducing µ, ν = 0, 1, 2, 3 and

Mµ 4 = R Pµ, (4.11)

we obtain from (4.6) the basic relation of the D = 4 alge-
bra AdS:

[Pµ, Pν ] = − 1
R2 Mµν . (4.12)

Using the physical AdS assignment of the generators
{MAB} = (Mj , Nj , Pj , P0), where Mj = 1

2 εjklMkl, Nj =
M0j (j, k, l = 1, 2, 3) one can write the classical r-matrix
(4.10) as follows:

rb(ξ) = ξR (P1 ∧ (N1 + M2) + P2 ∧ (N2 − M1)

+ P+ ∧ N3) + ξ M3 ∧ (N2 − M1), (4.13)

4 Compare with [13] where other relations between the phys-
ical AdS and CW bases were used.

where P+ = P0 + P3. Now we put ξ = i
κR and perform

the limit R → ∞ (see (1.3)). In such a way we obtain
the classical r-matrix (1.4) describing the light-cone κ-
deformation of the Poincaré algebra ( lim

R→∞
Pµ = Pµ)

rb
κ := lim

R→∞
rb

(
i

κR

)
(4.14)

=
i
κ

(
P1 ∧ (N1 + M2) + P2 ∧ (N2 − M1) + P+ ∧ N3

)
,

where the parameter κ is real, and the Poincaré algebra
generators (Mj , Nj , Pi, P0) satisfy the relations (1.2).

Similarly one can discuss the classical osp(1|4) r-matrix
(2.10) and its contraction limit. In order to obtain a finite
result we put ξ1 = ξ2 and introduce in accordance with
(4.2) and (4.4) the real osp(1|4) super-charges as follows:

e0±k =
√

iR Q±k (k = ±1, ±2). (4.15)

One gets the formula for the super-Jordanian classical
osp(1|4) r-matrix

r(ξ) := r12(ξ, ξ) (4.16)

= rb
12(ξ, ξ) − 2iR ξ(Q1 ∧ Q1 + Q2 ∧ Q2),

which leads in the limit (1.3) to the following super-Poincaré
classical r-matrix:

rsusy
κ := lim

R→∞
r

(
i

κR

)
= rb

κ +
2
κ

(Q1 ∧ Q1 + Q2 ∧ Q2) . (4.17)

The classical r-matrix (4.17) describes the superextension
of the light-cone κ-deformation of the Poincaré algebra.

In order to describe the adjoint action of P(3, 1) on the
four real supercharges Qα (α = ±1, ±2) it is convenient to
introduce a 2-component complex Weyl basis. In terms of
the Weyl basis Q

(±)
1 := Q1 ± iQ2, Q

(±)
2 := Q−1 ± iQ−2 the

commutation relations read as follows:

[Mj , Q
(±)
α ] = − i

2
(σj)αβ Q

(±)
β , (4.18)

[Nj , Q
(±)
α ] = ∓ i

2
(σj)αβ Q

(±)
β , [Pµ, Q(±)

α ] = 0,

and moreover

{Q(±)
α , Q

(±)
β } = 0,

{Q(+)
α , Q

(−)
β } = 2 (δαβ P0 − (σj)αβ Pj) , (4.19)

where σj (j = 1, 2, 3) are 2 × 2 σ-matrices. The spinor
Q(+) := (Q(+)

1 , Q
(+)
2 ) transforms as the left-regular rep-

resentation and the spinor Q(−) := (Q(−)
1 , Q

(−)
2 ) provides

the right-regular one.
Using the commutation relations (1.2) and (4.18), (4.19)

it easy to check that the r-matrix (4.17) (and also (4.14))
is of the Jordanian type (1.5) and (1.6), where hγ0 → iN3,
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Drinfeld–Jimbo � Standard κ-deformed D = 4
deformation Uq(osp(1|4)) ln q = 1

κR
(R → ∞) Poincaré superalgebra [15–17]

Jordanian type � Light-cone κ-deformation
deformation Uξ1,ξ2(osp(1|4))

ξ1 = ξ2 = i
κR

(R → ∞) of D = 4 Poincaré superalgebra

Fig. 1. Two different κ-deformations of the D = 4, N = 1 supersymmetries

eγ0 → P+, etc. Therefore we can immediately read off
the twisting two-tensor corresponding to this r-matrix [30]
as an analog of the formulas (3.2)–(3.6). However we can
obtain also a twisting two-tensor corresponding to the clas-
sical r-matrix (4.17) by applying the contraction AdS limit
to the full Jordanian type twisting two-tensor of osp(1|4).
This full twist F (ξ1, ξ2) (3.1) can be presented as follows:

F (ξ1, ξ2)

= F̃02(ξ2)F01(ξ1) (4.20)

×
(
F̃σ22 exp

(
ξ1e1−2 ⊗ e12e

−σ11
)
F̃−1

σ22

)
F̃σ22Fσ11

= F̃02(ξ2)F01(ξ1) exp
(
ξ1e1−2 ⊗ e12e

−σ11−σ̃22
)
F̃σ22Fσ11 .

Replacing here the mathematical generators ejk by the
physical ones MAB and performing the contraction limit
we obtain as a result the twisting two-tensor for the light-
cone κ-deformation of the super-Poincaré algebra:

Fκ(P(3, 1|1)) (4.21)

:= lim
R→∞

F

(
i

κR
,

i
κR

)
= Fκ(Q2)Fκ(Q1)Fκ(P(3, 1)),

where Fκ(P(3, 1)) is the twisting two-tensor of the light-
cone κ-deformation of the Poincaré algebra P(3, 1):

Fκ(P(3, 1)) (4.22)

:= e
i
κ P1⊗(N1+M2)e−2σ+

e
i
κ P2⊗(N2−M1)e−2σ+

e2iN3⊗σ+

and the super-factors Fκ(Qα) (α = 1, 2) are given by
the formula

Fκ(Qα) =

√
(1 + eσ+) ⊗ (1 + eσ+)

2(1 + eσ+ ⊗ eσ+)

×
(

1 +
2
κ

Qα

1 + eσ+
⊗ Qα

1 + eσ+

)
, (4.23)

σ+ :=
1
2

ln
(

1 +
1
κ

P+

)
. (4.24)

Since [N1 + M2, σ+] = [N2 − M1, σ+] = [N1 + M2, N2 −
M1] = 0, all three exponentials on the right side of (4.22)
mutually commute and they canbewritten in any order.We
add that the super-factors in (4.21) also mutually commute.

Using the twisting two-tensors (4.22) and (4.23) we can
calculate the twisted coproducts and twisted antipodes for
the generators of the Poincaré and super-Poincaré algebras.
These formulas will be given in a future publication. It

should be noted that the twisting functions (3.1), (4.22)
and (4.23) satisfy the unitarity condition, i.e., for example,

F �
κ (P(3, 1)) = F−1

κ (P(3, 1)). (4.25)

Therefore the twisted coproduct ∆κ(x) := Fκ∆(x)F−1
κ

and the twisted antipode Sκ(x) are real under the �-con-
jugation, i.e. (∆κ(x))� = ∆κ(x�), Sκ((Sκ(x�))�) = x.

5 Outlook

In this paper we studied the Jordanian type deformation of
osp(1|4) with the two deformation parameters ξ1, ξ2. If we
interpret physically osp(1|4) as the D = 4 AdS superalge-
bra, the parameters ξ1 and ξ2 are dimensionless and the role
of the dimensionful parameter takes over the AdS radius R.
The introduction of a D = 4 super-Poincaré limit requires
the relation ξ1 = ξ2 = ξ and the special contraction pro-
cedure described by the formula (1.3) with R-dependent
single deformation parameter ξ. In such a way we obtain a
new quantum deformation of the D = 4 super-Poincaré al-
gebra with κ as the deformation parameter. Recalling [27]
we can therefore introduce by the contraction procedure
two different κ-deformations of the D = 4, N = 1 super-
symmetries as represented in Fig. 1.

It is known that the light-cone κ-deformation of the
D = 4 Poincaré algebra with the classical r-matrix sat-
isfying CYBE (Classical Yang-Baxter Equation) can be
extended to D = 4 conformal symmetries (see e.g. [12]).
Analogously, the light-cone κ-deformation of D = 4 the
Poincaré superalgebra can be obtained by studying the
suitable Jordanian type deformation of D = 4 conformal
superalgebra su(2, 2|1). The Jordanian type deformations
of su(2, 2|1) and in particular the new embeddings of the
κ-deformations of D = 4 super-Poincaré algebra are now
under consideration.

Finally we would like to mention that the κ-deformation
of the N -extended AdS supersymmetries can be described
by the Jordanian type deformations of osp(N |4). An outline
of the mathematical framework describing the Jordanian
type twist quantization of osp(M |2n) has been given re-
cently in [30].
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